The pH dependence of the mechanism of reaction of hydrogen peroxide with a nonaggregating, non-mu-oxo dimer-forming iron (III) porphyrin in water.
نویسندگان
چکیده
The reaction of hydrogen peroxide with 5, 10,15,20-tetrakis(2,6-dimethyl-3-sulfonatophenyl)porphinato- iron(III) hydrate [(P)FeIII(H2O)] has been investigated in water between pH 1 and pH 12. The water-soluble (P)FeIII(H2O) neither aggregates nor forms a mu-oxo dimer. The pH dependence and rate-limiting second-order rate constants (kly) for oxygen transfer from H2O2 and HO2- to the iron(III) porphyrin were determined by trapping of the resultant higher-valent iron-oxo porphyrin species with 2,2'-azinodi(3-ethylbenzthiazoline)-6-sulfonate (ABTS). Reactions were monitored spectrophometrically by following the appearance of the radical ABTS.+. From a plot of the logarithm of the determined second-order rate constants for reaction of hydrogen peroxide with iron(III) porphyrin vs. pH, the composition of the transition states can be assigned for the three reactions that result in oxygen transfer to yield a higher-valent iron-oxo porphyrin species. The latter not only reacts with ABTS to provide ABTS.+ in a peroxidase-type reaction but also reacts with hydrogen peroxide to provide O2 in a catalase-type reaction. The nitrogen base 2,4,6-collidine serves as a catalyst for oxygen transfer from hydrogen peroxide to the (P)FeIII-(H2O) and (P)FeIII(HO) species. The preferred mechanism involves a 1,2-proton shift concerted with heterolytic cleavage of the peroxide O-O bond. An analogous mechanism is believed to occur in the peroxidase enzymes.
منابع مشابه
Kinetics and mechanism of the oxidation of water soluble porphyrin FeIIITPPS with hydrogen peroxide and the peroxomonosulfate ion.
The overall six-electron oxidation of water soluble porphyrin Fe(III)TPPS by hydrogen peroxide and peroxomonosulfate ion was studied by the stopped-flow method with UV-vis detection. A three-step consecutive reaction was observed with two intermediates: Fe(III)TPPS --> Int(1)--> Int(2)--> products. The products were identified as the iron(iii) complex of the biliverdin analog formed from TPPS a...
متن کاملA study of the mechanism and kinetics of cyclooctene epoxidation catalyzed by iron(III) tetrakispentafluorophenyl porphyrin.
A study has been conducted of the mechanism and kinetics of cyclooctene epoxidation by hydrogen peroxide catalyzed by iron(III) tetrakispentafluorophenyl [F(20)TPPFe(III)] porphyrin. The formation of cyclooctene oxide, the only product, was determined by gas chromatography, and the consumption of hydrogen peroxide was determined by (1)H NMR. UV-visible spectroscopy was used to identify the stat...
متن کاملEffects of porphyrin composition on the activity and selectivity of the iron(III) porphyrin catalysts for the epoxidation of cyclooctene by hydrogen peroxide
A detailed investigation was carried out of the effects of porphyrin composition on the activity and selectivity of iron(III) porphyrin catalysts used or the epoxidation of cyclooctene by hydrogen peroxide. Under conditions where the formation of -oxo-dimers can be avoided, the mechanism f cyclooctene epoxidation and hydrogen peroxide decomposition are identical for all of the porphyrin catalys...
متن کاملEpoxidation of Alkenes and Oxidation of Alcohols with Hydrogen Peroxide Catalyzed by a Fe (Br8TPPS) Supported on Amberlite IRA-400
Iron (III) meso-tetrakis(p-sulfonatophenyl)-β-octabromoporphyrin supported on Amberlite IRA- 400 [Fe(Br8 TPPS)-Ad-400] is a robust and efficient catalyst for oxidation of alkenes and alcohols at room temperature. The catalyst exhibits a high activity and stability in hydrocarbon oxidation by H2 O2 . The method was useful in the oxidation of various primary, secondary-aliphatic, alicyclic and ar...
متن کاملبررسی کارایی پودر آهن، پراکسید هیدروژن و پودر آهن ـ پراکسید هیدروژن درحذف رنگ اسیدی زرد 36 از محیط های آبی
Backgrounds and Objectives: A great part of organic compounds cause more pollution in natural waters meet, are chemical dye material. Azo dyes have more usage in different industries. Azo dyes not only give undesirable dye to the water but also have mutation potential and carcinogenesis effects in human and cause the production of toxic substances in water environments.The purpose of this stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 83 13 شماره
صفحات -
تاریخ انتشار 1986